B.A/B.Sc. 1st Semester (General) Examination, 2020 (CBCS) Subject: Mathematics Paper: BMG1CC1A/MATH-GE1 (Differential Calculus)

Time: 3 HoursFull Marks: 60				
		The figures in the margin indicate full marks.		
	Candidates are required to write their answers in their own words as far as practicable.			
[Notation and Symbols have their usual meaning]				
1.	Answe	er any six questions: $6 \times 5 = 30$		
(a)	(i)	Show that $\lim_{x\to 0} \cos \frac{1}{x}$ does not exist.	[3]	
	(ii)	Use Mean Value Theorem to show that $ \sin b - \sin a \le b - a $, for all real numbers <i>a</i> and <i>b</i> .	[2]	
(b)		The function $f(x) = \begin{cases} e^x & \text{if } x \le 1 \\ mx + b & \text{if } x > 1 \end{cases}$ is continuous and differentiable at $x = 1$.	[5]	
		Find the values of the constants <i>m</i> and <i>b</i> .		
(c)		State and prove Leibnitz's theorem for successive differentiation.	[1+4]	
(d)		Trace the curve, $a^2x^2 = y^3(2a - y)$.	[5]	
(e)		Determine the position and nature of the double points on the curve $y(y-6) = x^2(x-2)^3 - 9$.	[5]	
(f)	(i)	Does the function $f(x) = \begin{cases} x & \text{for } 0 \le x < 1 \\ 0 & \text{for } x = 1 \end{cases}$ has a maximum on the interval	[2]	
		$0 \le x \le 1?$		
	(ii)	Find the angle of intersection of the curves $x^2 - y^2 = a^2$ and $x^2 + y^2 = a^2\sqrt{2}$.	[3]	
(g)	(i)	Find the radius of curvature of the parabola $y^2 = 4x$ at the vertex (0, 0).	[2]	
	(ii)	If $u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0.$	[3]	
(h)		If $f(h) = f(0) + hf'(0) + \frac{h^2}{2!}f''(\theta h), 0 < \theta < 1$ then find θ , when $h = 1$ and	[5]	
		$f(x) = (1-x)^{5/2}.$		
2 . Answer any three questions: $10 \times 3 = 30$				
(a)	(i)	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ then prove that	[5]	
		$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = -\frac{3}{(x+y+z)^3}.$		
	(ii)	If $V = \sin^{-1} \frac{x^2 + y^2}{x + y}$ then prove that $xV_x + yV_y = \tan V$.	[5]	
(b)	(i)	Find the condition that the conics $ax^2 + by^2 = 1$ and $a_1x^2 + b_1x^2 = 1$ shall cut orthogonally.	[5]	
	(ii)	Find the envelope of the straight line $\frac{x}{a} + \frac{y}{b} = 1$, where the parameters a and b are	[5]	
<i>.</i> .		connected by the relation $ab = c^2$.		
(c)	(i)	Find the asymptotes of the curve $(x^2 - y^2)^2 - 4x^2 + x = 0$.	[5]	

(ii)
Show that in any curve,
$$\rho = \left\{ \left(\frac{dx}{d\psi}\right)^2 + \left(\frac{dy}{d\psi}\right)^2 \right\}^{\frac{1}{2}}$$
. [5]

- Find Maclaurin series for $x \sin(2x)$. (d) (i) [5] [5] (ii)
 - Examine whether $x^{\frac{1}{x}}$ possesses a maximum or a minimum and determine the same.
- State Rolle's Theorem. Find all numbers c in the interval (0, 2) that satisfy the (i) (e) [2+4]conclusion to this theorem for $f(x) = x^3 - 3x^2 + 2x + 5$.
 - Find the Cauchy's reminder after *n* terms in the expansion of log(1 + x) in powers of (ii) [4] х.